Researchers to Help Advance Deep Learning Market as New Algorithm Increases Robot Security

Posted On July 22, 2022     

Developers and roboticists will need to eventually ensure that robots can work securely among humans when they are increasingly integrated into various real-world contexts. They have started to develop several methods for instantaneously determining the placements and predicting the movements of robots. However, the technology is yet to achieve the accuracy required for a booming industry.

A new deep learning model has just been developed to gauge the position of robotic arms and forecast their movements. This concept is amazing for the Deep Learning Market as the researchers have used an algorithm to primarily increase robot security while cooperating or interacting with people.

In the present study, researchers investigate a framework that increases the safety of people working near robots since it is necessary to foresee accidents during HRI (Human-Robot Interaction). Pose detection is considered to be a crucial part of the overall solution. In order to do this, the team suggested a novel Pose Detection architecture built on Extreme Learning Machines (ELM) and Self-Calibrated Convolutions (SCConv).

The risk of a robot colliding with nearby objects can be decreased by accurately forecasting its future intentions and motions by estimating its current position. Two essential elements—an SCConv and an ELM model- provide the posture estimation and movement prediction method.

The SCConvs component enhances the overall channel and spatial dependencies of their model. On the other hand, the ELM method is a recognised effective method for classifying data.

The team also improved the framework using recurrent neural networks, pose detection, and movement prediction (RNN). The group discovered that no research combined these two technologies in the present application. So they decided to test whether this combination enhances the application.

Researchers think that their primary contributions are the creation of a framework that can identify a robotic arm's position and movements, enhancing the arm's safety. Additionally, they verified the combined abilities of SSConv and EML and broadened their scope of application.

The framework created by this group of academics has the potential to enhance the security of both current and future robotic systems. They might also modify and apply the SCConv and ELM algorithms for other applications, like human pose estimation, object identification, and object classification.

Why Choose Us

Client First Policy
Excellent Quality
After Sales Support
24/7 Email Support

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities