Novel Development in Artificial Intelligence as a Service: Researchers Utilize AI to Identify Nanomaterials Increasing Scientists' Field of Vision

Posted On April 16, 2022     

Every year, scientists and institutions invest significant resources in developing novel materials that will help power the world. As natural resources become scarce, teams are increasingly turning to nanomaterials. Further, consumer preference has also changed towards high-value and high-performance products. Nanomaterials are already being used in various applications, including medicines, energy storage, quantum computing, and conversion. Serial experimental approaches for identifying novel materials, on the other hand, impose prohibitive constraints on discovery mainly because it offers a great deal of compositional and structural flexibility.

Now, machine learning has successfully guided the synthesis of novel nanomaterials, removing hurdles to materials discovery. The team utilized a novel system to sift through a given dataset. The technology is a breakthrough for Artificial Intelligence as a Service Market. This is because AI helped identify new structures used to power activities in the automotive industries, chemical, and renewable energy. With ramifications in green energy and waste reduction, AI machine learning gives a roadmap for defining novel materials for any requirement.

"Megalibrary," the newly developed data-generation tool, dramatically increases a researcher's field of vision. Each Megalibrary has millions, if not billions, of nanostructures, each with its shape, structure, and composition. They are all positionally encoded on a two-by-two square centimeter chip. All chips consist of novel inorganic materials, more than scientists have ever gathered and classified.

The Megalibraries were created using a technology called polymer pen lithography. This massively parallel nanolithography instrument allows the site-specific deposition of thousands of features per second.

The team asked the model to tell what combinations of up to seven factors would be unique. The machine predicted 19 options, and after testing each one experimentally, 18 were correct.

Scientists were tasked with detecting combinations of four nucleotides when mapping the human genome. However, the loosely defined "materials genome" encompasses nanoparticle combinations of any of the 118 elements in the periodic table. This can be used for shape, size, phase morphology, crystal structure, and other factors. Megalibraries are smaller subsets of nanoparticles, which will get researchers closer to establishing a whole map of a material's genome.

The use of Megalibraries in conjunction with machine learning could eventually solve this difficulty, leading to a better knowledge of what factors influence certain material qualities.

Because machine learning models and AI algorithms can only be as good as the data used to train them, access to unprecedentedly big, high-quality datasets is critical.

Why Choose Us

Client First Policy
Excellent Quality
After Sales Support
24/7 Email Support

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities