New Development in High-Performance Computing (HPC) Market: Researchers Suggest a Programming Language that could Help HPCs be Efficient and Quick

Posted On April 16, 2022     

The number of tasks for computers has considerably increased. They may include image processing or other deep learning applications on neural nets. The statement denotes high-performance computers need to filter through vast amounts of data in a reasonable amount of time. When undertaking activities of this sort, it's commonly considered that there are unavoidable trade-offs between speed and dependability. According to this opinion, if speed is the most critical component, then reliability suffers, and vice versa.

A group of researchers, mostly from MIT, is questioning this idea, claiming that having it all is achievable. The new programming language, which they built specifically for high-performance computing, "does not have to compete" with "speed and correctness." Rather, they can collaborate in our programs. The study is highly relevant for High-Performance Computers Market as it could help manufacture products that are efficient while simultaneously being quick in doing tasks.

Everything in the computer language is programmed to generate a single number or a tensor. Tensors are vector and matrix extensions, respectively. Tensors are n-dimensional arrays that can be as small as a 3x3x3 array or as large as an array with even more (or less) dimensions. Tensors are n-dimensional arrays that can take the form of a 3x3x3 array or something else. Whereas vectors are Single D objects (often represented by individual arrows) and matrices are two-dimensional arrays of numbers, tensors are n-dimensional arrays that can take the form of a 3x3x3 array or something even higher (or lower) dimensions.

The principal rationale for ATL is that high-performance computing consumes so many resources that you need to be able to adapt or rewrite programs to make them run quicker. The sole aim of a computer algorithm or program is to begin a specified computation. However, there are numerous approaches to writing that program— "a befuddling collection of different code implementations. Often, the simplest program is developed first, but this may not be the fastest way to run it, forcing additional adjustments."s.

To confirm that this optimization is correct, a proof helper can be utilized. The team's new language, which includes a proof assistant, is based on Coq, which is already in use. On the other hand, the proof assistant can mathematically rigorously prove its claims.

It is currently the first and only tensor programming language with formally proven optimizations. However, researchers emphasized that ATL is simply a prototype—albeit one that appears to be promising—that has only been tested on a few small programs. One of the team's main goals for the future is to improve ATL's scalability so that it can be used for the more prominent programs that one sees in the real world.

Why Choose Us

Client First Policy
Excellent Quality
Robust After Sales Support
24/7 Email Support

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities