Autonomous Vehicle Market: New Robust Technology To Enhance the Navigation System

Posted On May 11, 2022     

While there is now a lot of interest in self-driving cars, existing AI navigation systems do not consider the behaviour of human drivers or other autonomous vehicles on the road. Many firms, research organisations, and academic institutions worldwide have been attempting to produce safe and dependable autonomous vehicles in recent years. However, in order to be deployed on a broad scale, these vehicles must be able to move through a wide range of routes and settings without colliding with other cars, pedestrians, bicycles, animals, or nearby obstructions.

A team has presented research that aims to create robust technologies that can detect and identify the behaviours of other road agents (such as automobiles, buses, trucks, bicycles, and pedestrians). The vehicles can use these behaviours to guide the driving trajectories of autonomous vehicles. The novel technique could boost the Autonomous Vehicle Market and improve the performance of simulators which are currently used to train models for self-driving vehicle navigation.

Researchers describe a unique behaviour-driven simulator capable of simulating various behaviours observed in real-world traffic settings. The underlying navigation system may be trained to deal with complex driving behaviour in real-world traffic situations.

The researchers' simulation technique is based on a model that can classify the driving behaviour of other agents on the road. This model, known as CMetric, evaluates other agents' trajectories and then computes them using cutting-edge computer vision tools.

The driving behaviour prediction model can be combined with a wide range of cutting-edge vehicle navigation algorithms. This means that other teams all across the world could utilise it to enhance the training of their own models and overall performance.

On the other hand, the team's strategy offers a fresh approach to modelling and evaluating autonomous driving technology in complicated urban or demanding environments. This is a critical function when dealing with the severe traffic conditions seen in Asian cities. In such regions, traffic density is higher, and many drivers do not adhere to traffic rules. The first step in generating specific traffic patterns is using our simulator.

The dataset released by the researchers is relevant for different teams and could help in better navigation of autonomous vehicles and ADASs in dense and complex urban situations. The researchers intend to make their simulation technique open source so that other teams and businesses can utilise it.

Why Choose Us

Client First Policy
Excellent Quality
After Sales Support
24/7 Email Support

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities