Artificial Intelligence in Medicine Market to Develop as Researchers Develop a Novel Algorithm that could make Creation of New Treatments Easier

Posted On April 16, 2022     

Antibodies refer to tiny proteins produced by the immune system. They can bind to specific regions of viruses and neutralize them. Their unique strength could be a weapon in the fight against SARS-CoV-2, the virus that causes Covid-19. The synthetic antibody attaches to the virus's spike proteins and prevents it from entering a human cell. However, scientists must first figure out how that attachment will occur to create a successful synthetic antibody.

Scientists are likely to speed up the advancement of new treatments with the help of machine-learning technology. The newly developed algorithm can anticipate the complexity formed when two proteins join together. Their technology considerably contributes to Artificial Intelligence in Medicine Market as it is 80 to 500 times faster than current software methods. Further, it frequently predicts protein structures that are closer to actual structures that have been observed.
This method could aid researchers in better understanding some biological techniques that consist of protein interactions. This may include DNA replication and repair. Further, it could also boost the creation of new treatments.

"Equidock" focuses on rigid-body docking. These two proteins join in 3D space by translating or rotating. However, their forms do not squeeze or flex.

The model takes the 3D structures of two proteins and turns them into 3D graphs that the neural network can process. Proteins comprise amino acid chains, each of which is illustrated in the graph by a node.

It needs to be figured out which sections of the proteins are likely to be these binding pocket locations. This is because they have all the knowledge necessary to put the two proteins together. If these two sets are discovered, all that remains is to figure out how to rotate and translate the proteins. Primarily, keep in mind that one set should correspond to the other.

The lack of training data was one of the most challenging aspects of developing this model. The team felt it is essential to incorporate geometric knowledge into Equidock as there is so little experimental 3D data for proteins. If such geometric limitations aren't in place, the model might pick up erroneous correlations in the dataset.

According to researchers, their method might be used to generate tiny, drug-like compounds. Because these compounds adhere to protein surfaces in precise ways, figuring out how they do so quickly could help speed up drug development.
The team is set to further work on Equidock, where it can predict flexible protein docking in the future. The most significant problem is a shortage of training data. Thus, researchers are striving to create synthetic data that they can use to improve the model.

Why Choose Us

Client First Policy
Excellent Quality
After Sales Support
24/7 Email Support

Buy Chapters or Sections

Avail customized purchase options to meet your exact research needs:

  • Buy sections of this report
  • Buy country level reports
  • Request for historical data
  • Request discounts available for Start-Ups & Universities