The increasing popularity of 3D printing for creating a wide range of objects, from personalized medical gadgets to low-cost dwellings, has increased the demand for novel 3D printing materials tailored to specific applications.
Researchers have devised a data-driven process that employs machine learning to optimize novel 3D printing materials with numerous qualities, like toughness and compression strength, to reduce the time it takes to discover these new materials. The novel machine system is likely to bring boom within 3D Printing Materials Market as it is cost-efficient, generates minimal waste, and is more advanced than manual discovery methods.
The team was able to lower the costs of the system by streamlining the materials development. Further, they reduced the environmental impact of the system by decreasing the amount of chemical waste used. The algorithm might even suggest unique chemical foundations that are out of the capability of human intuition.
In the system, the incorporated algorithm works by performing a trial and error discovery process. A material developer chooses a few elements, feeds the algorithm information about their chemical compositions, and specifies the mechanical qualities the resulting material should have. The programme then adjusts the amounts of those components (like knobs on an amplifier) and evaluates how each formula affects the material's attributes before arriving at the perfect combination.
Once the output is received, the developer uses a combination of processes to test the sample and evaluate the material's performance. The experiment results are fed to the system that develops from the experiment and uses the new information to decide other formulations.
Researchers believe that the system could easily outperform conventional methods against most applications. This is because one optimization of the algorithm can be relied upon for finding the best possible solution. The advent of this technology would eliminate the chemist's need to preselect the material formulations.
The process has a wide variety of applications over the whole material science in general. For example, the present system is applicable for building new batteries that are both more efficient and less expensive. This technique might also be used to optimize paint for an automobile that performed well while still being environmentally friendly.
The process can be developed further by incorporating additional automation. For now, researchers have to mix and test each sample manually. However, if robots are integrated, then dispensing and mixing systems would become even more accessible and precise. In time, the team would also like to test the data-drive discovery system with applications other than 3D printing inks.